

Surveillance prospective - évaluation de la pertinence des échantillonneurs intégratifs passifs (EIP) pour la surveillance des milieux aquatiques

Campagnes in situ mises en œuvre

Irstea: B. Mathon, N. Mazzella, A. Dabrin, C. Miège IFREMER: C. Tixier, J-L. Gonzalez, B. Andral BRGM: J-P. Ghestem, A. Togola, M.El Mossaoui LNE: S. Lardy-Fontan

Septembre 2017

Avec la participation de Pierre-François Staub, AFB Et F. Botta, INERIS (pour la sélection des sites)

Contexte de programmation et de réalisation

Ce rapport a été réalisé dans le cadre du programme scientifique et technique AQUAREF pour l'année 2017, thèmes G et RSP-n°4 (EIP), partenariat ONEMA - Irstea 2015-2018.

Il s'inscrit dans le contexte de construction d'un programme d'actions AQUAREF pour l'évaluation de la pertinence des EIP pour la surveillance des milieux aquatiques, programme engagé depuis fin 2013.

Il fait suite au rapport AQUAREF suivant: Cécile Miège, Nicolas Mazzella, Marina Coquery, Céline Tixier, Jean-Louis Gonzalez, Jean-Philippe Ghestem, Anne Togola, Sophie Lardy-Fontan, Valeria Dulio, Fabrizio Botta - Synthèse et perspectives du groupe d'expert Aquaref sur les échantillonneurs passifs - Rapport final AQUAREF-Irstea, 2015 - 64 p.

Auteur (s):

Cécile Miège, Irstea Lyon, Ingénieur de Recherche, cecile.miege@irstea.fr
Nicolas Mazzella, Irstea Bordeaux, Ingénieur de Recherche, nicolas.mazzella@cirstea.fr
Aymeric Dabrin, Irstea Lyon, Ingénieur de Recherche, aymeric.dabrin@irstea.fr
Baptiste Mathon, Irstea Lyon, Chargé de recherche, baptiste.mathon@irstea.fr
Céline Tixier, IFREMER Nantes, Cadre de Recherche, Celine.Tixier@ifremer.fr
Jean-Louis Gonzalez, IFREMER Toulon, Cadre de Recherche, Jean-Louis.Gonzalez@ifremer.fr
Jean-Philippe Ghestem, BRGM Orléans, Cadre de Recherche, jp.ghestem@brgm.fr
Anne Togola, BRGM Orléans, Cadre de Recherche, a.togola@brgm.fr
Sophie Lardy-Fontan, LNE, Cadre de Recherche, sophie.lardy-fontan@lne.fr

Avec la participation de :

Pierre-François Staub, AFB, pierre-francois.staub@afbiodiversite.fr Fabrizio Botta, INERIS, Cadre de Recherche, Fabrizio.BOTTA@ineris.fr

Les correspondants

AFB: Pierre-François Staub, pierre-francois.staub@afbiodiversite.fr

<u>Irstea</u>: Cécile Miège, <u>cecile.miege@irstea.fr</u>

<u>Référence du document</u>: B. Mathon, A. Togola, N. Mazzella, S. Lardy-Fontan, A. Dabrin, J-P. Ghestem, C. Tixier, J-L. Gonzalez, C. Miège - Surveillance prospective - évaluation de la pertinence des échantillonneurs intégratifs passifs (EIP) pour la surveillance des milieux aquatiques - Campagnes in situ mises en œuvre - Rapport AQUAREF 2017 - 18 p.

Droits d'usage : Accès libre

Couverture géographique : International Niveau géographique : National

Niveau de lecture : Professionnels, experts

Nature de la ressource : Document

Sommaire

1. LE CONTEXTE ET LES OBJECTIFS
2. LES 3 TYPES D'ETUDES IN SITU MISES EN OEUVRE62.1 L'étude « temporelle »62.2 L'étude « multi-sites »62.3 L'étude « chlordécone-Martinique »6
3. LES SITES D'EXPOSITION ET CRITERES DE CHOIX
4. LES SUBSTANCES ETUDIEES
5. LES ECHANTILLONNEURS INTEGRATIFS PASSIFS ET LES SUPPORTS D'EXPOSITION MIS EN ŒUVRE
6. LES STRATEGIES D'ECHANTILLONNAGE146.1 Les fréquences d'échantillonnage et types d'échantillons146.2 Les contrôles qualité sur le terrain15
7. LE CALENDRIER ET LES LIVRABLES DE L'ACTION

1. LE CONTEXTE ET LES OBJECTIFS

Les échantillonneurs intégratifs passifs (EIP) ont fait l'objet de nombreux travaux de développement et de mises en œuvre locales ces dernières années et sont identifiés dans la directive 2013/39/CE (directive fille de la DCE) comme des outils prometteurs pour la surveillance future des milieux aquatiques.

Au niveau national, les besoins 1/ de capitaliser sur l'expertise AQUAREF accumulée sur l'applicabilité et l'évaluation des dispositifs EIP existants et 2/ de réaliser une étude pilote ciblée suffisamment étendue (dans l'espace et le temps) pour apprécier les performances effectives des EIP au regard de la surveillance de l'état qualitatif des masses d'eau, ont été identifiés dans le « Recueil des besoins en termes d'appui, de méthodes et d'outils pour la surveillance » établi par l'ONEMA en 2015.

De façon concomitante, la révision en cours du dispositif national de surveillance prospective des contaminants chimiques des milieux aquatiques prévoit un volet "outils innovants" visant à améliorer les stratégies de surveillance (note DEB de mai 2016).

Dans ce contexte, la construction d'un programme d'actions AQUAREF pour l'évaluation de la pertinence des EIP pour la surveillance des milieux aquatiques a été engagée depuis fin 2013. En effet, suite à une réunion du 22 octobre 2013, rassemblant des représentants de l'ONEMA, d'AQUAREF et de la DEB, il a été décidé de mobiliser le groupe d'expert AQUAREF sur les EIP pour démontrer l'intérêt des échantillonneurs intégratifs passifs EIP dans le cadre de l'application de la Directive cadre sur l'eau (DCE) pour la surveillance des eaux. Plusieurs objectifs ont été mis en avant pour répondre à cette problématique et s'articulent autour de deux actions :

- Evaluer in situ et démontrer l'intérêt de déployer des EIP pour la surveillance dans les milieux aquatiques de substances réglementées (parmi les substances de l'état chimique, de l'état écologique et les SPAS [Substances Pertinentes A Surveiller] dont certaines sont incluses dans la Watch List);
- Mettre en œuvre in situ des EIP pour révéler la présence dans les milieux aquatiques de substances émergentes (parmi les substances émanant du groupe CEP priorisation);
- Organiser les principes d'une surveillance EIP de la qualité chimique des masses d'eau notamment en formant les acteurs de la surveillance aux EIP classiques

Les 2 premiers points, concernant les démonstrations in situ, font l'objet d'une description précise dans ce rapport. Le troisième point sur la formation des acteurs de la surveillance sera détaillé dans les livrables finaux de ce programme.

A noter que l'évaluation de l'intérêt des EIP pour accompagner la surveillance dans le biote est traitée dans une autre fiche ONEMA intitulée « Approche graduée pour la surveillance dans le biote : Campagnes in situ pour démontrer l'applicabilité des supports gammares, poissons et échantillonneurs passifs dans la surveillance des contaminants avec une NQE_{biote} » (pilotage Irstea, participation INERIS). Cette deuxième action, complémentaire de l'action abordée dans le présent rapport, concerne les

substances bioaccumulables et disposant d'une norme de qualité environnementale (NQE) dans le biote.

2. LES 3 TYPES D'ETUDES IN SITU MISES EN OEUVRE

Les campagnes in situ ont pour objectif opérationnel de permettre, à terme, de valider la possibilité de substituer (au cas par cas en premier lieu, ou plus systématiquement dans l'avenir) la surveillance chimique avec échantillonnage ponctuel par une surveillance avec EIP « classiques » (révision DCE), pour les substances avec une NQE_{eau}. Ces campagnes sont mises en places afin de mettre en évidence la meilleure qualité de l'information obtenue avec EIP, en comparaison d'avec un échantillonnage ponctuel, en permettant notamment d'obtenir une meilleure connaissance de la contamination des masses d'eau (aide à la décision et révision possible des listes des substances de l'état chimique et/ou écologique). Pour cela 26 sites d'études ont été présélectionnés afin de suivre la contamination des masses d'eau (tableau 1).

La démonstration in situ consiste en 3 types d'études : un suivi temporel intensif (étude dite temporelle), un suivi sur un large panel de sites et de substances (étude dite multisite) et un suivi de la contamination par la chlordécone en Martinique.

2.1 L'ETUDE « TEMPORELLE »

Dans l'étude avec un suivi temporel intensif (étude dite temporelle), il s'agit de comparer les concentrations moyennes et les incertitudes sur la concentration moyenne annuelle obtenues à partir de données d'échantillonnages ponctuels d'eaux ou de données d'échantillonnage par EIP. L'étude est réalisée sur 3 sites (cf. tableau 1), pendant une année complète. Nous privilégions ici des sites contaminés, afin d'obtenir des résultats d'analyse dans les eaux supérieurs aux limites de quantification ; les sites marins ne sont pas considérés pour cette raison.

2.2 L'ETUDE « MULTI-SITES »

Dans l'étude sur un large panel de sites et de substances (étude dite multi-site), il s'agit de réaliser une campagne sur 23 situations de contamination contrastées (en termes de pression de contamination), pour l'étude de la distribution spatiale des contaminations, soit par EIP, soit par échantillonnage ponctuel d'eau. Il s'agit de comparer les informations obtenues sur les aspects gradient de concentration, classement de sites et identification des sites contaminés. L'étude consiste en une seule campagne pour chacun des 23 sites. Ces campagnes sont planifiées entre l'automne 2017 et le printemps 2018, selon les sites. Parmi les sites, il y a 3 sites de référence (peu contaminés), 3 sites marins et 3 sites dans les DOM. Ces sites seront majoritairement sélectionnés parmi les sites de l'étude prospective Watch List.

2.3 L'ETUDE « CHLORDECONE-MARTINIQUE »

Enfin, nous étudions spécifiquement la chlordécone (PSEE), pour répondre à un besoin spécifique en Martinique (étude dite chlordécone-Martinique). Il s'agit ici de doser la chlordécone sur 4 sites dans la baie du Galion (1 site d'eau douce et 3 sites d'eaux

marines). Pour 1 campagne, nous testerons 2 EIP en comparaison, les POCIS <u>et</u> les membranes silicones. Pour 4 autres campagnes étalées sur plusieurs saisons, nous appliquerons les POCIS <u>seuls</u>. Les performances de la méthode d'analyse dans les eaux du BRGM n'étant pas compatible avec la NQE pour eaux marines, l'analyse de la chlordécone dans les échantillons ponctuels d'eau marine sera réalisée dans le cadre d'une action complémentaire pilotée par l'IFREMER (action Aquaref G2b7), avec comparaison de 2 techniques d'extraction : la SBSE et l'extraction liquide-liquide.

3. LES SITES D'EXPOSITION ET CRITERES DE CHOIX

Une attention particulière a été portée sur les critères suivants lors du choix de ces sites :

- Le site doit être un minium sécurisé afin d'éviter au maximum le risque de vandalisme.
- L'accès au site doit être facile et possible tout au long de l'année.
- Une hauteur d'eau et un débit minimum sont nécessaires tout au long de l'année, afin de pouvoir exposer les systèmes au-dessus du sédiment en étant continuellement immergés.
- Les systèmes de déploiement doivent pouvoir être déployés depuis les berges en cas de navigation sur le site.
- Aucun dragage ne doit être envisagé au cours de la période des campagnes.
- Enfin le site doit avoir la capacité d'accueillir l'ensemble des systèmes de déploiement.

Au final, l'ensemble des sites d'étude présélectionnés sont définis dans le tableau 1 et illustrés dans la figure 1. Nous devons encore supprimer 3 sites de cette liste, car non financés. A noter que les 2 sites de référence Allier lieu-dit de Chabalier (bassin AG) et Le Luech à Génolhac (bassin RMC) sont très proches et donc redondants. La décision sur la liste finale des sites s'alimentera d'une discussion à avoir lors du GT RSP de décembre 2017.

Tableau 1: Liste des sites d'étude présélectionnés pour l'étude temporelle (gras surligné en bleu), l'étude multi-site (normal surligné en blanc) et l'étude chlordécone-Martinique (italique surligné en vert).

Site RSP 4	Nom du bassin	Code national	Code liste vigilance	Nom de la station
RSP_4_Site1	Artois-Picardie	1016000	CE_WL2016_M1_St0104	L'Escaut canalisé
K3i _4_3ite i	Ai tois-i icai die	1010000	CL_WL2010_W11_5t0104	Fresnes sur Escaut
RSP_4_Site2	Rhin-Meuse	2037500	CE_WL2016_M1_St0203	La Souffel à Mundolsheim
RSP_4_Site3	Rhin-Meuse	2103800	CE_WL2016_M1_St0207	La Rosselle à Petite- Rosselle
RSP_4_Site4	Seine-Normandie	3199200	CE_WL2016_M1_St0304	L'Iton a Normanville
RSP_4_Site5	Seine-Normandie	3219780	CE_WL2016_M1_St0305	La Risle a Ambenay 2
RSP_4_Site6	Seine-Normandie	/	/	Antifer
RSP_4_Site7	Loire-Bretagne	4085500	/	Le Clain en aval de Poitiers
RSP_4_Site8	Loire-Bretagne	4026500	Site référence	L'Allier lieu-dit de Chabalier
RSP_4_Site9	Loire-Bretagne	4209990	CE_WL2016_M1_St0428	La Vilaine à Guichen
RSP_4_Site10	Adour-Garonne	5156950	/	L'Hers mort au niveau de St-Sauveur
RSP_4_Site11	Adour-Garonne	5158700	/	l'Aussonnelle à Seilh
RSP_4_Site12	Adour-Garonne	5083585	CE_WL2016_M1_St0520	Le Tolzac à Varès
RSP_4_Site13	Adour-Garonne	5073800	/	La Jalle de Blanquefort
RSP_4_Site14	Adour-Garonne	5099170	Site référence	La Boralde Flaujaguèse en amont d'Espalion
RSP_4_Site15	Rhone-Méditerranée	6016000	/	Drac à Fontaine
RSP_4_Site16	Rhone-Méditerranée	6046000	/	Bourbre à Chavanoz
RSP_4_Site17	Rhone-Méditerranée	6177910	CE_WL2016_M1_St0628	Tréboul à Castelnaudary
RSP_4_Site18	Rhone-Méditerranée	6118550	Site référence	Le Luech à Génolhac
RSP_4_Site19	Rhone-Méditerranée	6097000	CE_WL2016_M1_St0618	Le Gier à Givors
RSP_4_Site20	Rhone-Méditerranée	/	/	La baie du Lazaret (Rade Toulon)
RSP_4_Site21	Martinique	8225101	site RCS	Grand Galion
RSP_4_Site22	PÉROU-PÈRES (Guadeloupe)	à définir	à définir	à définir
RSP_4_Site23	La Réunion	10520050	/	L'étang du Gol
RSP_4_Site24	Martinique	6000530	/	Galmang
RSP_4_Site25	Martinique	6000530	/	Galherb
RSP_4_Site26	Martinique	6000530	/	Galcora

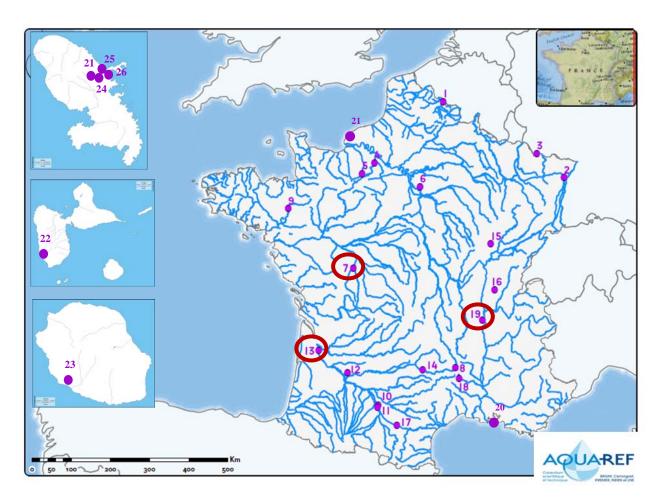


Figure 1 : Carte représentant la localisation de l'ensemble des sites d'études. Les sites entourés en rouge sont les sites de l'étude temporelle. Dans les DOM seulement, la chlordécone est mesurée ; pour les sites en vert, c'est la seule substance mesurée.

4. LES SUBSTANCES ETUDIEES

Les substances suivies dans le cadre de ces campagnes sont issues de la famille des pesticides, biocides, pharmaceutiques, métaux, composés organométalliques, organophosphates et hormones. On rappelle qu'il n'y a pas de prestation analytique (pas de sous-traitance) dans ce projet; les laboratoires de routine ne sont pas prêts actuellement pour cela. Les analyses ont donc été réparties au sein du consortium expert sur le sujet.

Pour l'étude temporelle : Les substances sont sélectionnées parmi celles de l'état chimique, de l'état écologique et les SPAS (Substances Pertinentes A Surveiller), dont certaines sont incluses dans la Watch List. Nous privilégions ici les substances pour lesquelles les résultats d'analyse dans les eaux seront significativement supérieurs aux limites de quantification ; les substances hydrophobes ne sont pas considérées pour cette raison. La liste des substances étudiées est donnée dans le Tableau 2.

Pour l'étude multi-site : Elles sont sélectionnées parmi celles de l'état chimique, de l'état écologique et les SPAS (Substances Pertinentes A Surveiller), dont certaines sont

incluses dans la Watch List. Les substances apolaires sont quantifiées dans les membranes silicone sous réserve de la compatibilité des méthodes (extraction et purification) et sous réserve de la disponibilité des constantes de calibration (en cours d'évaluation pour certaines). La liste des substances étudiées est donnée dans le Tableau 2.

L'étude de la chlordécone est limitée aux DOM :

- En Martinique, elle est mise en œuvre avec 2 EIP en comparaison (les membranes silicone et les POCIS) pour 1 campagne et avec 1 seul EIP pour 4 campagnes supplémentaires (POCIS) :, dans la cadre de l'action Chlordécone-Martinique (5 campagnes au total).
- Pour la Réunion et la Guadeloupe, elle est mise en œuvre avec l'EIP membrane silicone uniquement et dans le cadre de l'étude multi-site (1 seule campagne).

Tableau 2: Liste des substances issues de l'état chimique, l'état écologique, la watch list et les SPAS, sélectionnées pour l'étude temporelle et l'étude multi-site

Arrêté surveillance DCE 7 aout 201	_ _			
Substances de l'état chimique des	eaux de Surrace			
Substances	Famille analytique	EIP	Temporelle	Multi-site
Alachlore	Pesticide polaire	POCIS	x	х
Atrazine	Pesticide polaire	POCIS	х	х
Cadmium et ses composés	Métaux et métalloides	DGT	x	х
Chlorfenvinphos	Pesticide apolaire	Membrane silicone		х
Chlorpyrifos (éthylchlorpyrifos)	Pesticide apolaire	Membrane silicone		х
Aldrine	Pesticide apolaire	Membrane silicone		х
Dieldrine	Pesticide apolaire	Membrane silicone		х
Endrine	Pesticide apolaire	Membrane silicone		х
Isodrine	Pesticide apolaire	Membrane silicone		х
DDD 44'	Pesticide apolaire	Membrane silicone		х
DDE 44'	Pesticide apolaire	Membrane silicone		х
DDT 24'	Pesticide apolaire	Membrane silicone		х
DDT 44'	Pesticide apolaire	Membrane silicone		х
Diuron	Pesticide polaire	POCIS	х	х
Endosulfan	Pesticide apolaire	Membrane silicone		х
Endosulfan alpha	Pesticide apolaire	Membrane silicone		х
Endosulfan bêta	Pesticide apolaire	Membrane silicone		х
Hexachlorocyclohexane alpha	Pesticide apolaire	Membrane silicone		х
Hexachlorocyclohexane bêta	Pesticide apolaire	Membrane silicone		х
Hexachlorocyclohexane delta	Pesticide apolaire	Membrane silicone		х
Hexachlorocyclohexane gamma	Pesticide apolaire	Membrane silicone		х
Isoproturon	Pesticide polaire	POCIS	х	х
Plomb et ses composés	Métaux et métalloides	DGT	х	х
Nickel et ses composés	Métaux et métalloides	DGT	х	х
Simazine	Pesticide polaire	POCIS	х	х
Composés du tributylétain				
(Tributylétain cation)	Organométalleux	Membrane silicone		х
Aclonifène	Pesticides apolaire	Membrane silicone		х
Bifénox	Pesticides apolaire	Membrane silicone		х
Cyperméthrine	Pesticides apolaire	Membrane silicone		х

Dichlorvos	Pesticide polaire	POCIS		х
Heptachlore	Pesticide apolaire	Membrane silicone		х
Heptachlore époxyde endo trans	Pesticide apolaire	Membrane silicone		x
Heptachlore époxyde exo cis	Pesticide apolaire	Membrane silicone		х
Terbutryne	Pesticide polaire	POCIS	x	х

Arrêté surveillance DCE 7 ac	out 2015 _ annexe II				
Polluants spécifiques de l'état écologique des eaux de surface					
Substances	Famille analytique	EIP	Temporelle	Multi-site	
Chlortoluron	Pesticide polaire	POCIS	х	х	
Linuron	Pesticide polaire	POCIS	x	х	
		membrane			
Pendiméthaline	Pesticides apolaire	silicone		X	
Cyprodinil	Pesticide polaire	POCIS	x	X	
Arsenic	Métaux et métalloides	DGT spécifique	x	х	
Zinc	Métaux et métalloides	DGT	x	х	
Chrome	Métaux et métalloides	DGT	x	х	
Cuivre	Métaux et métalloides	DGT	x	х	
Glyphosate	glyphosate	POCIS modifié		х	
		membrane			
Biphényle	Pesticides apolaire	silicone		X	
Oxadiazon	Pesticide polaire	POCIS	x	х	
Métazachlore	Pesticide polaire	POCIS	x	х	
Tebuconazole	Pesticide polaire	POCIS	x	х	
		membrane			
Diflufenicanil	Pesticides apolaire	silicone		X	
		membrane			
Chlordécone	Pesticide apolaire DOM	silicone /POCIS		x (DOM)	
Imidaclopride	Pesticide polaire	POCIS	x	х	
AMPA	glyphosate	POCIS modifié		X	
Azoxystrobine	Pesticide polaire	POCIS	x	х	
Boscalid	Pesticide polaire	POCIS	х	х	

Les Substances Pertinentes A Su	ırveiller (SPAS) 7 août 2015			
Substances	Famille analytique	EIP	Temporelle	Multi-site
Acétochlore	Pesticide polaire	POCIS	х	Х
Aluminium	Métaux et métalloides	DGT	х	х
AMPA	glyphosate	POCIS		х
Antimoine	Métaux et métalloides	DGT	х	х
Arsenic	Métaux et métalloides	DGT	х	х
Atrazine deisopropyl	Pesticide polaire	POCIS	х	х
Atrazine desethyl	Pesticide polaire	POCIS	х	х
Baryum*	Métaux et métalloides	DGT	х	х
Beryllium*	Métaux et métalloides	DGT	х	х
Carbamazepine	Médicaments	POCIS		х
Carbamazepine epoxide	Divers (autres organiques)	POCIS		х
Chrome	Métaux et métalloides	DGT	х	х
Cobalt	Métaux et métalloides	DGT	х	х
Cuivre	Métaux et métalloides	DGT	х	х
Cyprodinil	Pesticide polaire	POCIS	х	х
Diazepam	Médicament	POCIS		х
Diclofenac	Divers (autres organiques)	POCIS		х
Diflufenicanil	Pesticides apolaire	POCIS		х
Dimethenamide	Pesticide polaire	POCIS	х	х
Dimethoate	Organophosphorés	POCIS	х	х
Epoxiconazole	Pesticide polaire	POCIS	х	х
	Hormones stéroles et			
Estrone	stéroïdes (oestrogènes,	POCIS		X

	progestogènes)			
Etain*	Métaux et métalloides	DGT	х	х
Fer	Métaux et métalloides	DGT	х	х
Glyphosate	Glyphosate	POCIS modifié		х
Ketoprofen	Médicament	POCIS		x
Linuron	Pesticide polaire	POCIS	х	х
Lorazepam	Médicament	POCIS		x
Manganèse	Métaux et métalloides	DGT	х	х
Metazachlore	Pesticide polaire	POCIS	х	х
Métolachlore	Pesticide polaire	POCIS	х	х
Molybdene*	Métaux et métalloides	DGT	х	х
Norethindrone	Stéroles et stéroïdes (oestrogènes, progestogènes)	POCIS		x
Ofloxacine	Médicament	Médicament POCIS		x
Oxazepam	Médicament	POCIS		x
Pirimicarbe	Carbamates	POCIS	S x	
Prochloraz	Pesticide polaire	POCIS	х	х
Propyzamide	Pesticide polaire	POCIS	х	х
Sélénium	Métaux et métalloides	DGT	х	х
Sulfamethazine	Médicament	POCIS		х
Sulfamethoxazole	Médicament	POCIS		х
Terbuthylazine	Pesticide polaire	POCIS	х	х
Thallium*	Métaux et métalloides	·		х
Titane*	Métaux et métalloides	les DGT x		х
Uranium	Métaux et métalloides	ides DGT x		х
Vanadium	Métaux et métalloides	DGT	х	х
Zinc	Métaux et métalloides	DGT	х	х

^{*}les données bibliographiques concernant les capacités des DGT en termes de performance et de surveillance sont très rares. L'exercice servira de test sur ce point pour ces éléments.

5. <u>LES ECHANTILLONNEURS INTEGRATIFS PASSIFS ET LES SUPPORTS D'EXPOSITION MIS EN ŒUVRE</u>

Les campagnes, menées à l'échelle nationale, nécessitent de travailler avec des EIP et des systèmes ou supports pour les exposer, qui soient homogènes et disponibles commercialement. Chaque EIP a été acheté chez un unique fournisseur. Cela permet d'obtenir des résultats comparables entre chaque site.

Les EIP mis en œuvre sont :

 La DGT (Diffusive gradients in thin films) pour les métaux. Le fournisseur de ces échantillonneurs est DGT® Research (Angleterre, http://www.dgtresearch.com/).
 Ce sont des DGT « open pore » avec 0,78 mm d'épaisseur de gel et de type Chelex pour l'ensemble des métaux et de type Ferrihydrite spécifiquement pour l'arsenic.
 Le système d'exposition des DGT doit être équivalent à celui présenté dans la figure 2.

Figure 2: Photo du système d'exposition des DGT d'Irstea Antony

- Les POCIS (Polar Organic Compound Integrative Sampler) pour les pesticides polaires, résidus pharmaceutiques, hormones, composés perfluorés, alkyphénols. Le fournisseur de ces échantillonneurs est Exposmeter (Suède, http://www.exposmeter.com/products/passive-samplers-for-water). Ce sont des POCIS pharmaceutiques avec une phase HLB, de format rond avec 45cm² de surface. Le système d'exposition POCIS utilisé se compose d'un canister inox Exposmeter, il est présenté dans la figure 3.

Figure 3 : Photos du système d'exposition des POCIS d'Irstea Bordeaux, un canister inox Exposmeter

Les membranes silicone pour pesticides hydrophobes et TBT. Le fournisseur de ces échantillonneurs est Shielding-solutions (Angleterre, http://rfi-shielding.com/). Ces échantillonneurs sont constitués de membranes en polydimethylsiloxane (PDMS) de dimension égale à 3,3 cm x 108 cm x 250 µm. Le système d'exposition POCIS utilisé se compose d'un canister inox Exposmeter, il est présenté dans la figure 4.

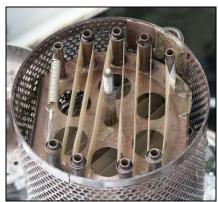


Figure 4 : Photos du système d'exposition des membranes silicones de l'Ifremer, un canister inox Exposmeter.

6. LES STRATEGIES D'ECHANTILLONNAGE

6.1 LES FREQUENCES D'ECHANTILLONNAGE ET TYPES D'ECHANTILLONS

• <u>Etude temporelle</u>

L'étude est menée en continu, au cours d'une année complète. Chaque mois, deux séries successives de campagnes sont menées, au cours desquelles des duplicats de POCIS et de DGT sont exposés pendant 15 jours. Le nombre de duplicats dépend du nombre de familles analytiques étudiées.

En parallèle de l'exposition des EIP, des prélèvements ponctuels d'eau sont effectués tous les 15 jours, au moment de la pose et/ou de la collecte des EIP. Ces prélèvements permettent d'évaluer la contamination du milieu pour les mêmes 56 substances que celles analysées dans les EIP. Ils permettront de comparer les échantillonnages par EIP avec ceux ponctuels d'eau.

De plus, des prélèvements ponctuels d'eau sont réalisés pour mesurer les paramètres physico-chimiques suivants : le pH, la température, la conductivité, la concentration en oxygène dissous, le débit (en continu), les concentrations en matières en suspension (MES), le carbone organique total (COT), le carbone organique dissous (COD), l'aromaticité de l'effluent (SUVA), les ions majeurs CI^- , SO_4^{2-} , Na^+ , K^+ , Mg^{2+} , Ca^{2+} , NH_4^+ , NO_2^- , NO_3^- , PO_4^{3-} , HCO_3^- , N_{tot} .

• Etude multi-site

L'étude multi-site consiste en une campagne unique sur les sites présentés dans le tableau 1. Comme pour l'étude temporelle, des duplicats de POCIS et de DGT sont exposés pendant 15 jours. Et, pour échantillonner les substances plus hydrophobes du tableau 2, nous exposons des duplicats de membranes silicones. Le nombre de duplicats d'EIP dépend du nombre de familles analytiques étudiées.

Des prélèvements ponctuels d'eau sont effectués en début et fin des 15 jours d'exposition. Ces prélèvements permettent d'évaluer la contamination du milieu pour les mêmes 108 substances que celles analysées dans les EIP. Ils permettront de comparer les échantillonnages par EIP avec ceux ponctuels d'eau. La fraction analysée correspond à la fraction totale pour les substances apolaires, et à la fraction dissoute pour les substances polaires (log Kow < 3, filtration à 0,7 μ m) et les métaux (filtration à 0,45 μ m). Sur un nombre restreint de sites, les composés organiques apolaires/hydrophobes seront également analysés dans la fraction dissoute pour permettre une meilleure interprétation des données en comparaison avec celles obtenues après échantillonnage par membrane silicone.

De plus, des prélèvements ponctuels d'eau sont réalisés pour mesurer les paramètres physico-chimiques suivants : le pH, la température, la conductivité, la concentration en oxygène dissous, le débit (en continu), les concentrations en matières en suspension (MES), le carbone organique total (COT), le carbone organique dissous (COD), l'aromaticité de l'effluent (SUVA), les ions majeurs Cl^- , SO_4^{2-} , Na^+ , K^+ , Mg^{2+} , Ca^{2+} , NH_4^+ , NO_2^- , NO_3^- , PO_4^{3-} , HCO_3^- , N_{tot} .

• Etude chlordécone-Martinique

L'étude consiste en 5 campagnes sur les sites présentés dans le tableau 1. Pour 1 campagne, des duplicats de POCIS et de membrane silicone sont exposés pendant 15 jours pour échantillonner la chlordécone. Pour les 4 autres campagnes, seuls les POCIS sont exposés (duplicat).

Des prélèvements ponctuels d'eau sont effectués en début et fin des 15 jours d'exposition. Ces prélèvements permettent d'évaluer la contamination du milieu par la chrlodécone. Ils permettront de comparer les échantillonnages par EIP avec ceux ponctuels d'eau. L'analyse de la chlordécone dans les échantillons ponctuels d'eau marine (non filtrée) sera réalisée dans le cadre d'une action complémentaire pilotée par l'IFREMER (action Aquaref G2b7), avec comparaison de 2 techniques d'extraction : la SBSE et l'extraction liquide-liquide.

De plus, des prélèvements ponctuels d'eau sont réalisés pour suivre les paramètres physico-chimiques suivants : le pH, la température, la conductivité, la concentration en oxygène dissous, le débit (en continu), les concentrations en matières en suspension (MES), le carbone organique total (COT), le carbone organique dissous (COD), l'aromaticité de l'effluent (SUVA), les ions majeurs CI-, SO42-, Na+, K+, Mg2+, Ca2+, NH4+, NO2-, NO3-, PO43-, HCO3-, Ntot.

6.2 Les controles qualite sur le terrain

Afin de caractériser au mieux les conditions dans lesquelles les prélèvements ont été effectués, nous avons mis en place des fiches terrain. Ces fiches permettent de renseigner les conditions climatiques lors de l'échantillonnage, l'aspect des abords et

du cours d'eau mais également des mesures de pH, température, conductivité et concentration en oxygène dissous. Enfin, il est possible de noter tout type d'observation permettant d'identifier les difficultés rencontrées lors de l'échantillonnage.

Pour chacune des campagnes de <u>l'étude temporelle</u>, un POCIS dopé en laboratoire avec des traceurs internes (dits PRC, permeability reference compounds), est exposé dans l'eau pour évaluer l'influence des conditions d'exposition sur le terrain (température, agitation, ...); ces conditions impactent l'accumulation des substances dans les EIP. Les concentrations dans l'eau, moyennées sur la durée d'exposition, ne sont pas corrigées avec ces POCIS dopés en PRC. Nous déployons aussi des « blancs terrain », une fois par trimestre pour les DGT et une fois par semestre pour les POCIS. Ces « blancs terrain » subissent le même traitement que les autres EIP sauf qu'ils ne sont pas exposés dans le milieu aquatique. Ils permettent d'identifier une possible contamination pendant le transport et la mise en place des EIP sur site, avant leur immersion dans l'eau (contamination atmosphérique).

Pour <u>l'étude multi-site</u>, seuls les PRC des membranes silicones sont utilisés pour corriger les taux d'échantillonnage in situ (modèles mathématiques d'accumulation calés pour cela). Ces PRC dans les membranes silicone servent aussi de contrôle des conditions d'exposition; de ce fait il n'est pas utile d'exposer des POCIS dopés en PRC. Des « blancs terrain » sont également déployés pour les DGT et POCIS sur 5 sites choisis au hasard parmi l'ensemble des sites du tableau 1. Pour les membranes silicone, ces « blancs terrain » sont déployés systématiquement.

Pour <u>l'étude chlordécone-Martinique</u>, les PRC des membranes silicones sont utilisés pour corriger les taux d'échantillonnage in situ dans ces membranes, et pour le contrôle des conditions d'exposition. Des « blancs terrain » sont également déployés : sur 1 site pour les POCIS, sur tous les sites pour les membranes silicone.

7. LE CALENDRIER ET LES LIVRABLES DE L'ACTION

Le calendrier des campagnes in-situ menées pour les 3 types d'études (temporelle, multi-site et chlordécone-Martinique) est donné dans le tableau 3. Les dates précises des campagnes des études multi-site et chlordécone-Martinique ne sont pas encore fixées. Comme explicité partie 3, il reste encore à supprimer 3 sites de la liste du tableau 3 (car non financés).

Tableau 3: Calendrier des campagnes in situ des 3 types d'études (temporelle, multisite et chlordécone-Martinique)

Nom du bassin	Code national	Nom de la station	Temporelle	Multi-site	Chlordécone-Martinique
Artois-Picardie	1016000	L'Escaut canalisé Fresnes sur Escaut	/	1 campagne en avril-mai 2018	/
Rhin-Meuse	2037500	La Souffel à Mundolsheim	/	1 campagne en février- mars 2018	/
Rhin-Meuse	2103800	La Rosselle à Petite- Rosselle	/	1 campagne en février- mars 2018	/
Seine-Normandie	3199200	L'Iton a Normanville	/	1 campagne en avril-mai 2018	/
Seine-Normandie	3219780	La Risle a Ambenay 2	/	1 campagne en avril-mai 2018	/
Seine-Normandie	/	Antifer	/	1 campagne en mai-juin 2018	/
Loire-Bretagne	4085500	Le Clain en aval de Poitiers	Campagne du 07/06/2017 au 06/06/2018	1 campagne en novembre 2017	/
Loire-Bretagne	4026500	L'Allier lieu-dit de Chabalier	/	1 campagne en mars- avril 2018	/
Loire-Bretagne	4209990	La Vilaine à Guichen	/	1 campagne en novembre 2017	/
Adour-Garonne	5156950	L'Hers mort au niveau de St-Sauveur	/	1 campagne en mai-juin 2018	/
Adour-Garonne	5158700	l'Aussonnelle à Seilh	/	A supprimer ?	/
Adour-Garonne	5083585	Le Tolzac à Varès	/	1 campagne en mai-juin 2018	/
Adour-Garonne	5073800	La Jalle de Blanquefort	Campagne du 26/04/2017 au 02/05/2017	1 campagne en novembre 2017	/
Adour-Garonne	5099170	La Boralde Flaujaguèse en amont d'Espalion	/	1 campagne en avril-mai 2018	/
Rhône- Méditerranée	6016000	Drac à Fontaine	/	A supprimer ?	/
Rhône- Méditerranée	6046000	Bourbre à Chavanoz	/	A supprimer ?	/
Rhône- Méditerranée	6177910	Tréboul à Castelnaudary	/	1 campagne en avril-mai 2018	/
Rhône- Méditerranée	6118550	Le Luech à Génolhac	/	1 campagne en mars- avril 2018	/
Rhône- Méditerranée	/	La baie du Lazaret (Rade Toulon)	/	1 campagne en mai-juin 2018	/
Rhone- Méditerranée	6097000	Le Gier à Givors	Campagne du 24/05/2017 au 23/05/2018	1 campagne en janvier 2018	/
Galion (Martinique)	8225101	Grand Galion	/	1 campagne en février- mars 2018	4 campagnes au premier semestre 2018
PÉROU-PÈRES (Guadeloupe)	à définir	à définir (sur le XX)	/	1 campagne en février- mars 2018	/
La Réunion	10520050	L'étang du Gol	/	1 campagne en mars- avril 2018	/
Martinique	6000530	Galmang	/		5 campagnes au premier semestre 2018
Martinique	6000530	Galherb	/		5 campagnes au premier semestre 2018
Martinique	6000530	Galcora	/		5 campagnes au premier semestre 2018

La fin des campagnes est prévue pour le printemps 2018. Les dernières analyses chimiques seront réalisées en septembre 2018 et permettront de rédiger un rapport de résultats bruts fin 2018.

Un colloque de restitution sera organisé mi 2019. Enfin, plusieurs documents seront rédigés, notamment un rapport de synthèse final, des publications et des lignes directives et recommandations pour les opérationnels. Le calendrier prévisionnel pour l'ensemble de ces livrables est présenté tableau 4.

Tableau 4:Calendrier prévisionnel des résultats attendus pour ce programme d'action Aquaref

Résultats prévus	Date prévisionnelle
Fin des analyses chimiques	Septembre 2018
Rapport de résultats bruts	Décembre 2018
Colloque de restitution avec supports des conférences (2019)	Mi 2019
Rapport de synthèse final et publications / valorisations diverses (2019)	Mi 2019
Lignes directrices et recommandations pour les opérationnels (2018-2019) : REX des campagnes RSP-EIP, guides de bonne pratique	Mi 2019