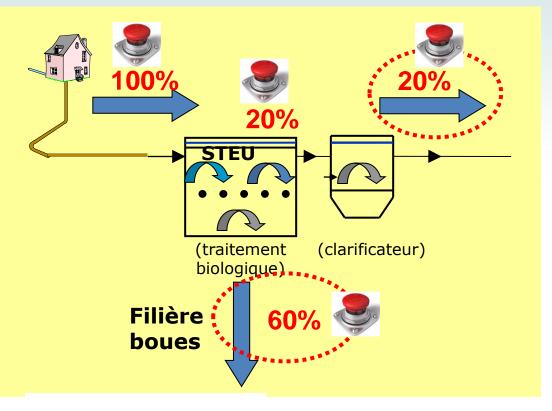
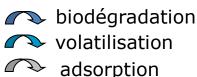
Abattement des micropolluants par les stations d'épuration : zoom sur le projet **ARMISTIQ**

M Coquery, JM Choubert, S Besnault, M Esperanza, H Budzinski, C Miège





Réductions des émissions :

https://projetamperes.cemagref.fr/

Substances bien éliminées, mais concentrées en sortie : alkylphénols (NP, OP) anti-inflam. (ibuprofène, paracétamol) métaux (Zn, As, Cr, Ni, Cu) HAP (anthracène, naphtalène)

Substances mal éliminées:
alkylphénols (NP1EC)
pesticides (glyphosate, AMPA,
atrazine, diuron)
bétabloquants (oxprénolol,
propanolol, sotalol)
antidépress. (carbamazépine,
diazépam, nordiazepam)
bronchodilat. (salbutamol, terbutaline)
anti-inflam. (diclofénac)
antibiotique (sulfaméthox, roxytrom)

Substances stockées dans les boues : alkylphénols (NP, OP) pesticides (aldrine, diuron)

métaux (Cd, Hg, Ni, Pb, Cu, Ti, Zn)
HAP (fluoranthène, naphtalène)

autres: tributyISn, triclosan, DEHP

ninatio

Amélioration de la réduction des micropolluants dans les stations de traitement des eaux usées domestiques – projet ARMISTIQ

Coordination:

IRSTEA, UR Milieux Aquatiques, Ecologie et Pollutions (MALY)

- Equipe Chimie des milieux aquatique
- Equipe Traitement des eaux résiduaires
- Les partenaires :
 - CIRSEE (Suez-Environnement)
 - ✓ LPTC-EPOC, Université Bordeaux1
 - ✓ ONEMA, AE RM&C
- Comité de suivi : ONEMA, Agences de l'Eau et DEB

OBJECTIFS

- Développer des connaissances et proposer des outils et des méthodes pour optimiser les équipements de traitement des eaux résiduaires vis à vis des micropolluants
- Les objectifs finaux :
 - acquérir des données opérationnelles concernant l'efficacité d'élimination des substances prioritaires et émergentes pour plusieurs filières de traitement déterminées
 - améliorer la connaissance sur les conditions optimales de réduction des substances par les traitements secondaires ou tertiaires des eaux et le traitement des boues
 - améliorer la connaissance sur les outils innovants (chimique et biologique) permettant d'évaluer globalement l'efficacité de traitement des filières (projet ANR ECHIBIOTEB)
 - disposer de solutions opérationnelles pour réduire les émissions polluantes et améliorer la protection de la qualité des écosystèmes

Actions ARMISTIQ

TRAITEMENTS TERTIAIRES AVANCES

micropolluants réfractaires aux traitements biologiques

INTENSIFS (action A): ozonation + charbon actif; $O_3 + UV + H_2O_2$

EXTENSIFS (action B): fossé; matériaux adsorbants (argile, zéolite)

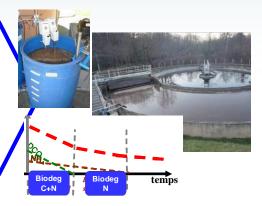
Actions ARMISTIQ

TRAITEMENTS TERTIAIRES AVANCES

micropolluants réfractaires aux traitements biologiques

INTENSIFS (action A): ozonation + charbon actif; $O_3 + UV + H_2O_2$

EXTENSIFS (action B): fossé; matériaux adsorbants (argile, zéolite)



OPTIMISATION TRAITEMENTS EXISTANTS - BOUES ACTIVEES (action C)

micropolluants partiellement éliminés

Tests à 4 conditions de fonctionnement, Protocole de mesure adsorption/biodégradation, Modélisation

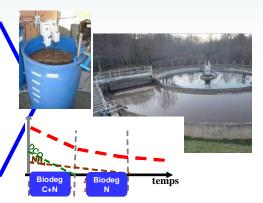
Actions ARMISTIQ

TRAITEMENTS TERTIAIRES AVANCES

micropolluants réfractaires aux traitements biologiques

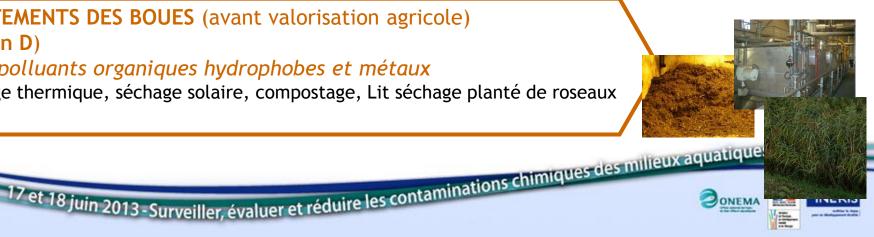
INTENSIFS (action A): ozonation + charbon actif; $O_3 + UV + H_2O_2$

EXTENSIFS (action B): fossé; matériaux adsorbants (argile, zéolite)



OPTIMISATION TRAITEMENTS EXISTANTS - BOUES ACTIVEES (action C)

micropolluants partiellement éliminés


Tests à 4 conditions de fonctionnement, Protocole de mesure adsorption/biodégradation, Modélisation

TRAITEMENTS DES BOUES (avant valorisation agricole) (action D)

micropolluants organiques hydrophobes et métaux

Séchage thermique, séchage solaire, compostage, Lit séchage planté de roseaux

Action A – Objectifs et procédés étudiés

Vers des traitements avancés intensifs de l'eau usée ?

Substances organiques polaires non biodégradables et substances adsorbables (ex métaux) avec concentrations quantifiées dans effluents des procédés secondaires

Action A – Objectifs et procédés étudiés

Vers des traitements avancés intensifs de l'eau usée ?

Substances organiques polaires non biodégradables et substances adsorbables (ex métaux) avec concentrations quantifiées dans effluents des procédés secondaires

Trois filières de traitement ont été évaluées combinant des procédés à échelle réelle et à l'échelle pilote

	Procédé	Temps de séjour des eaux	Caractéristiques
	Filtre à sable + ozone + charbon actif		
	grain (en amont : boues activées aération prolongée)	10 min	80 cm de charbon actif Filtrasorb 400
	Oxydation avancée (en amont : Bioréacteur à membranes)	2 à 10 min	Deux lignes de traitement : O_3 ou O_3/H_2O_2 ; O_3/UV ou H_2O_2/UV 5 mg O_3/L ; 2-5 mg H_2O_2/L ; 400-800 mJ/cm ²
-	Filtre à sable + Oxydation avancée (en amont : boues activées aération prolongée)	2 à 10 min	ldem

Action A – Principaux résultats

- Gain important d'élimination des micropolluants par les traitements tertiaires intensifs étudiés
- Les procédés O_3/UV et H_2O_2/UV , et la combinaison ozone + charbon actif, n'éliminent pas plus de micropolluants que l'ozone ou le charbon actif seuls
- La combinaison O₃/H₂O₂ élimine le plus de micropolluants (R>70%) en comparaison avec O_3 ou charbon actif seul
- Evaluation économique et environnementale en cours...

Action B – Objectifs et procédés étudiés

Vers des traitements avancés extensifs de l'eau usée ?

Substances organiques polaires non biodégradables et substances adsorbables (ex métaux) avec concentrations quantifiées dans effluents des procédés secondaires

Action B – Objectifs et procédés étudiés

Vers des traitements avancés extensifs de l'eau usée ?

Substances organiques polaires non biodégradables et substances adsorbables (ex métaux) avec concentrations quantifiées dans effluents des procédés secondaires

Procédé	Temps de séjour des eaux	Caractéristiques
ZRV – type fossé (en amont : filière décanteur digesteur + lit d'infiltration sur sable)	10 min	1 campagne mi-septembre 2010
Isotherme d'adsorption (batch) Charbon actif / Zéolite / Argile expansée	20h	1 campagne novembre 2010 eau traitée STEU dopée
Pilotes filtres horizontaux garnis de matériaux adsorbants Charbon actif / Zéolite / Argile expansée (en amont : boues activées aération prolongée)	4h 24h	4 campagnes (nov. 2011 à mars 2012) 4 campagnes (juin à novembre 2012)

ninations chimique

Action B – Principaux résultats

- Gain possible d'élimination pour quelques substances seulement pour le fossé étudié (faible temps de séjour)
 - =>Autres procédés à évaluer dans 2 actions du projet ZRV (Biotrytis, Marguerittes)
- L'association de mesure en pilote et en laboratoire (dopage) a permis de déterminer l'adsorption de micropolluants sur 3 matériaux : charbon actif, zéolite, argile
- Gain d'élimination important pour 10 micropolluants organiques par l'utilisation d'argile expansée
- Faibles adsorption mesurée avec la zéolite en pilote
- Adsorption très nettement supérieure avec le charbon actif
- Calcul technico-économique peu favorable à l'argile 17 et 18 juin 2013 - Surveiller, évaluer et réduire les contaminations chimiques des milieux aquatiques

Action C – Objectifs et procédés étudiés

Vers des traitements secondaires optimisés pour les micropolluants?

Substances partiellement éliminées avec rendements variables

Action C – Objectifs et procédés étudiés

Vers des traitements secondaires optimisés pour les micropolluants?

Substances partiellement éliminées avec rendements variables

Procédé	Temps de séjour des eaux	Caractéristiques
Boues activées aération prolongée (2900 EH) nitrification/dénitrification	24 à 48h	8 campagnes réparties sur 1 an réseau séparatif, eaux usées domestiques
Pilote (Batch 200L)	96h	4 campagnes réparties sur 1 an conditions contrôlées

- Variabilité des concentrations pendant 1 an
- Rendements d'élimination
- Influence des conditions de fonctionnement

- Constantes cinétiques de biodégradation
- Influence des conditions de fonctionnement
- Influence du substrat présent

Action C – Principaux résultats

- L'association de mesures sur STEU et en laboratoire (dopage) a permis de déterminer la part de la sorption et de la biodégradation de micropolluants dans les boues activées, et de prédire leur devenir à l'aide d'un modèle
- Classement des micropolluants suivant 5 comportements
- Gain possible d'élimination de certains micropolluants en modifiant les conditions de fonctionnement de STEU existantes:
 - Augmentation concentration en boue (aténolol, acébutolol, ibuprofène, paracétamol, bétaxolol)
 - Augmentation durée présence d'oxygène (acébutolol, aténolol, bétaxolol, ibuprofène, bisoprolol, métoprolol, diclofénac, bromazépam)
 - Influence de la température (ibuprofène, paracétamol, diclofénac, métoprolol, bromazépam) 17 et 18 juin 2013 - Surveiller, évaluer et réduire les contaminations chimiques des milieux aquatiques

Action D – Objectifs et procédés étudiés

Efficacité des procédés de traitements biologiques et thermiques des boues ?

Micropolluants organiques hydrophobes et métaux adsorbés dans les boues

Action D – Objectifs et procédés étudiés

Efficacité des procédés de traitements biologiques et thermiques des boues ?

Micropolluants organiques hydrophobes et métaux adsorbés dans les boues

Procédé	Temps de séjour des boues	Caractéristiques
Séchage haute température	5h	Sécheur à palette indirect, T° 120°C
Séchage basse température	1,8h	Sécheur à bande direct, T° 72°C
Séchage solaire	28 jours	Serre Héliantis prélèvements de mai à juin
Lit de séchage planté de roseaux	7 à 10 ans	Séchage (alimentation : 2 sem., repos: 14 sem)
Lit de séchage planté de roseaux	7 à 10 ans	Séchage (alimentation : 2j, repos: 14j)
Compostage casiers	Deux mois	Casiers semi-fermés ventilés sous une toiture, prélèvements de juin à août
Compostage tunnels	Un mois	Tunnels fermés ventilés prélèvements de mars à avril

Action D – Principaux résultats

- Gain possible d'élimination de certains micropolluants organiques par utilisation de traitement spécifique des boues
- Les métaux ne sont pas affectés par les procédés de traitement des boues étudiés (excepté le mercure)
 - Les séchages thermiques et solaires permettent la volatilisation et/ou la dégradation partielle de certaines molécules.
 - (la température, temps de séjour des boues, concentrations initiales en micropolluants, type de sécheur expliquent l'élimination)
 - Les lits de séchage plantés de roseaux ne favorisent pas l'élimination des micropolluants hydrophobes (malgré temps de séjour très élevés)
 - Le compostage permet de biodégrader certaines molécules (muscs, phtalates, triclosan et certains PCBs).
 - (rendements d'élimination plus élevés que pour le séchage)

Produits opérationnels

- Sur le plan méthodologique
 - Guide pour la réalisation de bilans matière sur site pour les procédés de traitement d'eau et des boues
 - Règles de calcul des rendements d'élimination
 - Protocole de mesure de l'adsorption et de la biodégradation

Produits opérationnels

- Sur le plan méthodologique
 - Guide pour la réalisation de bilans matière sur site pour les procédés de traitement d'eau et des boues
 - Règles de calcul des rendements d'élimination
 - Protocole de mesure de l'adsorption et de la biodégradation
- Sur le plan technologique
 - Valeurs de rendements d'élimination de micropolluants par différents procédés de traitement (eaux et boues)
 - Influence des conditions opératoires, conditions permettant de maximiser et fiabiliser la réduction des micropolluants
 - Catalogue de solutions technologiques

Produits opérationnels

- Sur le plan méthodologique
 - Guide pour la réalisation de bilans matière sur site pour les procédés de traitement d'eau et des boues
 - Règles de calcul des rendements d'élimination
 - Protocole de mesure de l'adsorption et de la biodégradation
- Sur le plan technologique
 - Valeurs de rendements d'élimination de micropolluants par différents procédés de traitement (eaux et boues)
 - Influence des conditions opératoires, conditions permettant de maximiser et fiabiliser la réduction des micropolluants
 - Catalogue de solutions technologiques
- Sur le plan scientifique
 - Devenir des micropolluants par adsorption (boues ou matériaux minéraux), biodégradation (directe ou cométabolisme), volatilisation
 - Modèle calé/validé pour prédire les concentrations en micropolluants en sortie de STEU (boues activées)

Valorisation

- Site web
 - http://armistiq.irstea.fr/armistiq/
- Livrables : état de l'art et résultats techniques
- Présentations orales (conférences)
- Articles scientifiques et techniques
- Thèses (2)
- Colloque de restitution : 1^{er} trimestre 2014 à Lyon

