L'apprentissage automatique pour le traitement de données géospatiales

Forum TIC - 01/06/18

Raphaël Delhome - Oslandia

Présentation

- Spécialiste de l'Open
 Source, créée en 2009
- Systèmes d'Information Géographique, 3D, data
- 15 collaborateurs,
 ~1.3M€ de CA (2017)

Contenu de la présentation

Ce qu'il y aura

- Etudes de cas Oslandia
- Outils et méthodes

Contenu de la présentation

Ce qu'il y aura

- Etudes de cas Oslandia
- Outils et méthodes

Ce qu'il n'y aura pas

Thématique biodiversité

Contenu de la présentation

Ce qu'il y aura

Ce qu'il n'y aura pas

- Etudes de cas Oslandia
- Outils et méthodes

Thématique biodiversité

Méthodes très génériques agnostiques au secteur d'activité

• Tant qu'il y a de la donnée géospatiale...

Exemples d'études Oslandia

 Evaluation de la qualité des données OpenStreetMap

Exemples d'études Oslandia

- Evaluation de la qualité des données OpenStreetMap
- Traitement des données issues de système de vélos en libre-service

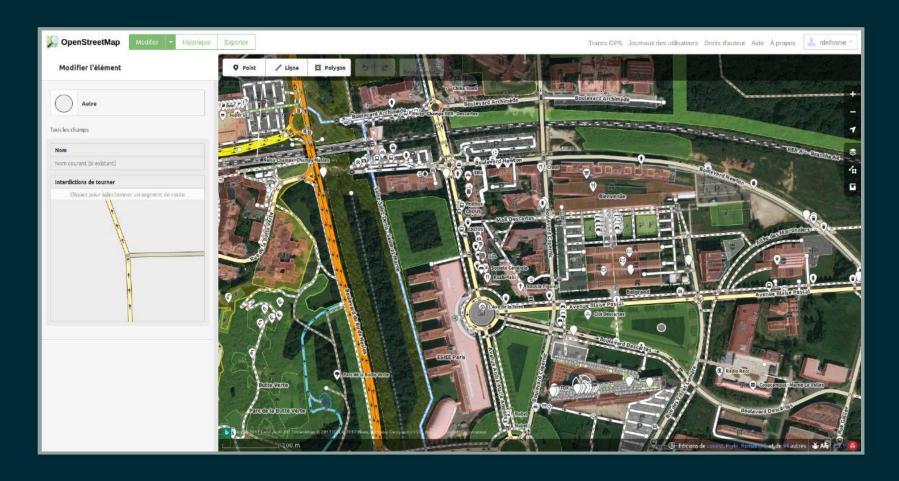
Exemples d'études Oslandia

- Evaluation de la qualité des données OpenStreetMap
- Traitement des données issues de système de vélos en libre-service
- Analyse d'images par l'apprentissage profond

http://data.oslandia.io

OpenStreetMap (OSM)

OpenStreetMap (OSM)



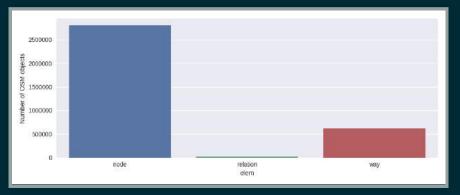
OSM: Cartographie collaborative

Qualité des données OSM

Question de recherche: Peut-on évaluer la qualité des données?

- Disponibilité d'une source de donnée alternative de référence
- Tout le monde peut contribuer, tout le monde sait-il contribuer?
- Evaluer les objets OSM avec leurs métadonnées

Présentation de la donnée

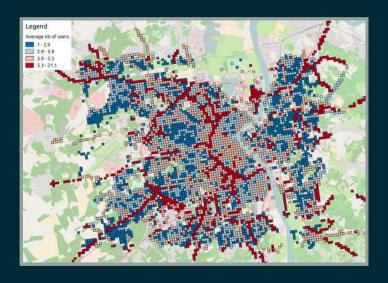


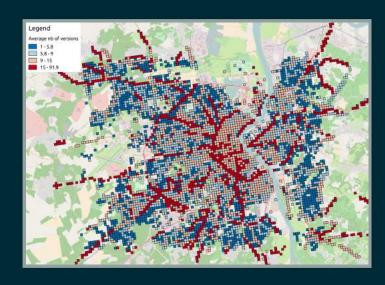
Extraction des métadonnées

En se focalisant sur les utilisateurs (ex: user id):

- Variables temporelles
 - sur OSM depuis 2136 jours, 1 jour d'activité
- Variables liées aux sets de modifications
 - 19 sets de modification, parmi lequel 1 autour Bordeaux
- Variables liées aux modifications
 - 4 modifications, (3 créations de noeuds, 1 amélioration de way), corrigé depuis
- Variables liées à l'éditeur utilisé
 - 14 modifs oavec Potlach, 3 avex iD, 2 avec JOSM

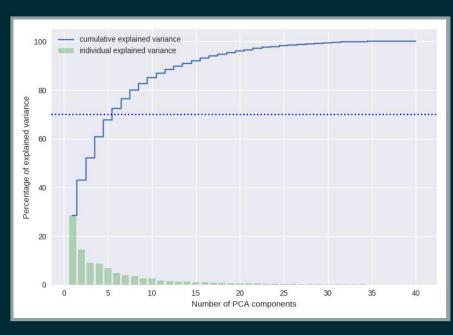
Cartographie à partir des métadonnées





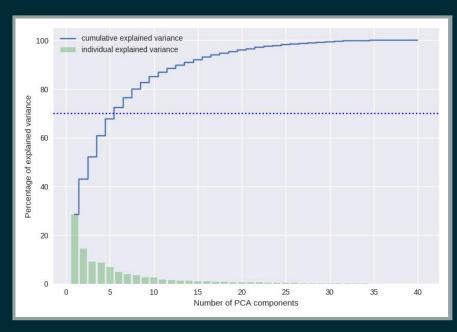
Réduction de dimension (Analyse en Composante Principale, ou ACP)

De 40 variables à juste une poignée : composantes les plus significatives



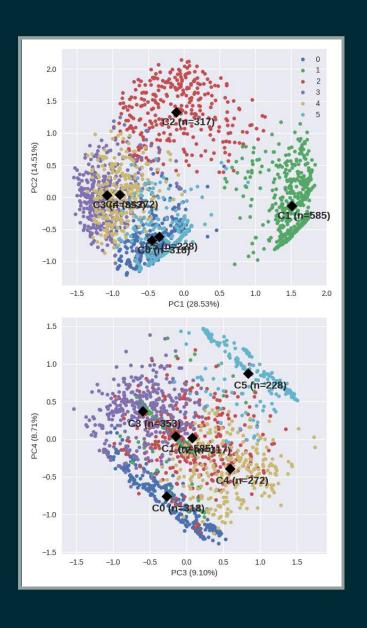
Réduction de dimension (Analyse en Composante Principale, ou ACP)

De 40 variables à juste une poignée : composantes les plus significatives



lifespan	0.005	0.151	0.017	-0.014	-0.013	0.032	
n inscription days	0.051	0.105	0.199	0.169	-0.073	-0.015	
n activity days	0.003	0.369	0.005	0.005	-0.081	0.111	
u chaset	-0.061	0.366	-0.068	0.050	-0.142	0.139	
dmean choset	0.001	0.001	0.002	-0.001	-0.003	0.002	
u modif byelem	0.089	0.161	-0.011	-0.011	-0.267	0.267	
u total modif	-0.130	0.356	-0.031	-0.010	-0.099	-0.004	0.4
n total modif node	0.284	0.062	-0.194	0.397	0.112	0.091	
n_total_modif_way	-0.110	-0.032	0.303		0.037	-0.054	
n total modif relation	0.394	-0.030	-0.109	0.044	-0.149	-0.038	
u node modif	-0.199	0.285	-0.085	-0.121	-0.013	-0.027	
n node modif cr	-0.251	0.052	-0.196	-0.181	-0.164	-0.492	
n_node_modif_imp	-0.078	0.093	0.081	-0.182	0.233	0.590	
n_node_modif_del	-0.027	0.051	-0.026	0.035	0.040	-0.002	0.2
n_node_modif_utd	-0.231	0.132	-0.370	0.077	0.235	-0.060	
n_node_modif_cor	-0.107	0.037	0.226	-0.379	-0.091	0.071	
n node modif autocor	-0.021	0.031	0.002	-0.029	-0.041	0.096	
u_way_modif	-0.174	0.293	0.074	0.147	-0.030	-0.127	
n_way_modif_cr	-0.106	0.091	-0.101	-0.036	-0.058	-0.265	
n_way_modif_imp	-0.203	0.141	0.391	0.388	0.042	0.060	200
n_way_modif_del	-0.014	0.024	-0.018	0.009	-0.000	0.001	0.0
n_way_modif_utd	-0.149	0.103	-0.145	0.309	0.133	-0.052	
n_way_modif_cor	-0.142	0.101	0.398	0.045	-0.101	-0.180	
n way modif autocor	-0.040	0.065	0.023	0.009	-0.060	0.034	
u_relation_modif	0.198	0.273	-0.078	0.043	-0.132	0.028	
n_relation_modif_cr	-0.011	0.050	-0.020	0.010	-0.001	-0.026	
n_relation_modif_imp	0.383	0.241	-0.123	0.072	-0.174	-0.019	-0.2
n_relation_modif_del	-0.001	0.006	-0.004	0.004	0.005	-0.003	V.C.
n relation modif utd	-0.011	0.060	-0.057	0.049	0.009	0.002	
n relation modif cor	0.310	0.122	-0.078	0.040	-0.051	-0.153	
n relation modif autocor	0.073	0.115	-0.012	-0.003	-0.128	0.104	
u_total_chgset	0.159	0.205	0.030	-0.025	0.250	-0.050	
p_local_chgset	-0.230	-0.127	-0.054	0.078	-0.360	0.106	
n_total_chgset_id	-0.147	-0.126	0.362	0.348	-0.148	0.224	-0.4
n_total_chgset_josm	0.178	0.198	0.109	-0.060	0.491	-0.187	
_total_chgset_maps.me_android	-0.008	-0.020	-0.009	-0.012	0.012	0.010	
n_total_chgset_maps.me_ios	-0.006	-0.010	-0.009	-0.002	0.012	0.005	1
n_total_chgset_other	-0.002	0.002	0.014	-0.030	0.020	0.021	
n_total_chgset_potlatch	-0.019	-0.044	0.210	-0.185	-0.377	-0.109	
n_total_chgset_unknown	0.004	-0.001	0.048	-0.058	-0.010	0.036	
	PC1	PC2	PC3	PC4	PC5	PC6	

Classification des utilisateurs



Classification des utilisateurs

Apprentissage nonsupervisé: K-means

G0 (n=318) Contributeurs peu expérimentés (noeuds)

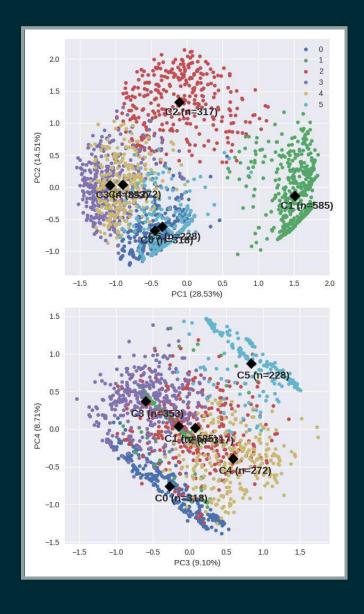
G1 (n=585) Utilisateurs expérimentés (relations), peu de contributions locales

G2 (n=317) Experts OSM polyvalents

G3 (n=353) Nouveaux contributeurs

G4 (n=272) Anciens utilisateurs (une seule contribution)

G5 (n=228) Spécialistes des ways, mais contributions rares

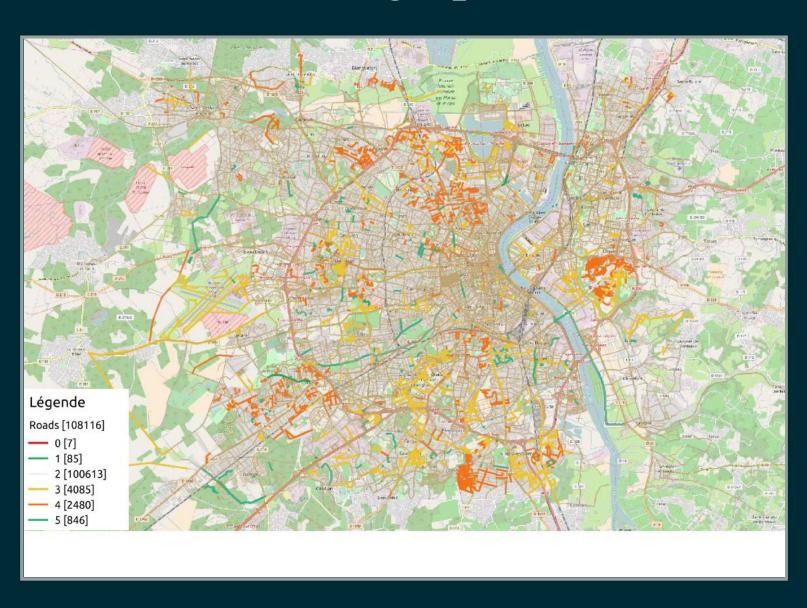


Utilisation de la classification

Exemple: Etiquetage des routes -> contributeurs expérimentés = objets OSM de bonne qualité

Groupes	Quantité	Objets
G0	318 (15.3%)	6690 (0.2%)
G1	585 (28.2%)	164 (0.0%)
G2	317 (15.3%)	2670391 (96.7%)
G3	353 (17.0%)	23287 (0.8%)
G4	272 (13.1%)	9993 (0.4%)
G5	228 (11.0%)	50474 (1.8%)

Cartographie



Conclusion

- Caractériser les métadonnées OSM avec de l'apprentissage non-supervisé
- Evaluation de la qualité des données OSM: l'exemple des routes à Bordeaux
- Comment aller plus loin?
 - complétude des métadonnées: tous les utilisateurs, toutes les contributions (pas seulement le local)
 - comparaison avec une vérité terrain: données IGN, orthophotos Bing...?

Etude des systèmes de vélos en libre-service

Services de vélos partagés

- Vélos en libre-service
- Location de courte durée
- Stations et disponibilités

Velo'v (Lyon)

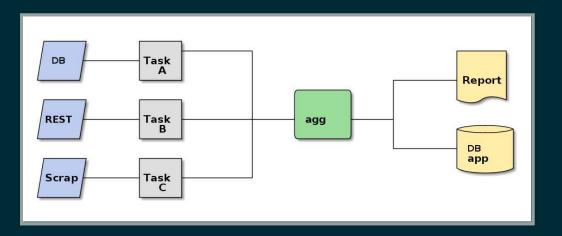
Données géospatiales ouvertes

Opendata Bordeaux

Data GrandLyon

Gérer la donnée

- Construire un pipeline de données avec Luigi
- Obtenir, transformer et stocker la donnée
 - récolte toute les 10 minutes (j son, xml, shp)
 - stockage en base (postgreSQL, postgis)
 - Ingénierie de la donnée et machine learning



Classification des stations (K-means)

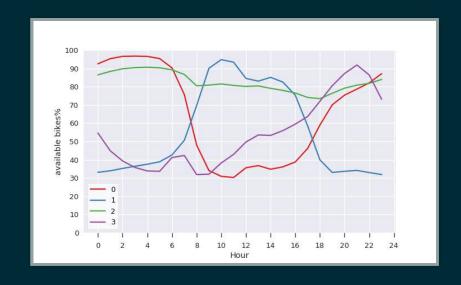
Classer les stations à partir de leur utilisation par les clients

- Inspiré d'un travail similaire à Dublin
- 1 profil = 1 individu
- Grouper les individus proches
- Déduire des profils "types"

Classification des stations (K-means)

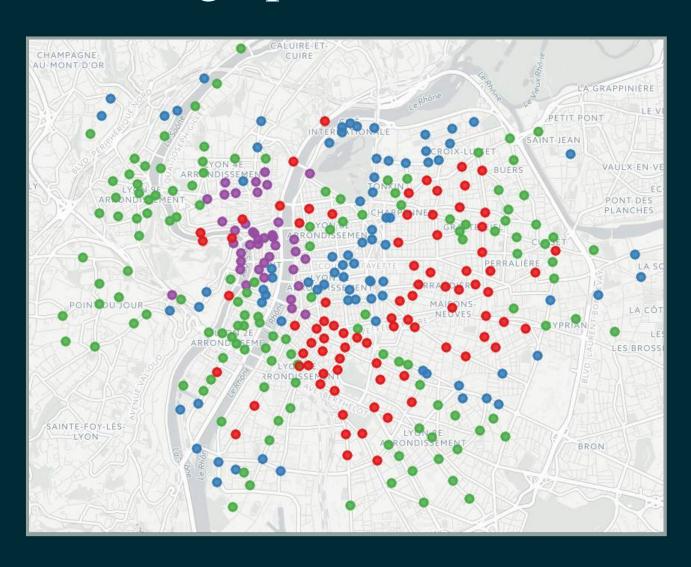
Classer les stations à partir de leur utilisation par les clients

- Inspiré d'un travail similaire à Dublin
- 1 profil = 1 individu
- Grouper les individus proches
- Déduire des profils "types"



Exemple avec 4 clusters

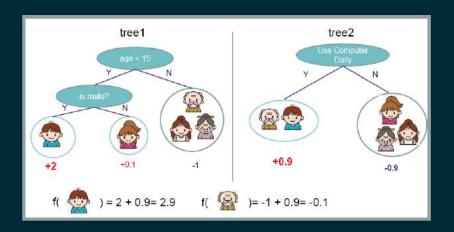
Cartographie des stations



Prédiction de la disponibilité des vélos

Apprentissage supervisé (méthode XGBoost) :

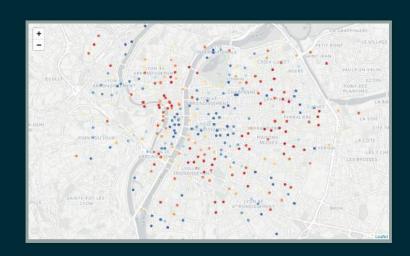
- prédire Y (proba. de disponibilité à H+1)
- à partir de **X** (heure, jour, vélos disponibles à H, ...)

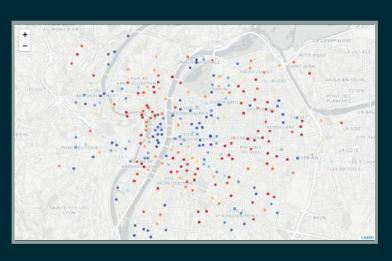


Résultats

Sans ingénierie particulière, RMSE = 0.095

- gauche: erreurs
- haut: prédictions
- bas: réalité





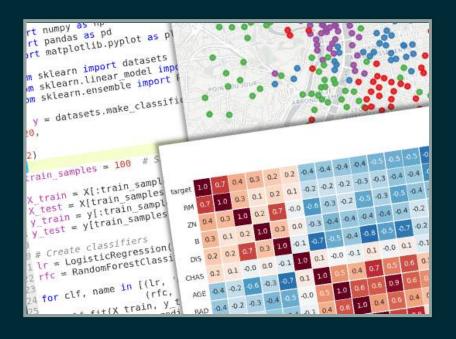
Conclusion

- Traiter des questions de recherche simples avec un jeu de données géospatiales ouvert
- Construire un pipeline de données
- Production d'une application web pour visualiser la donnée
- Ouverture : "online learning", ou continuer à aggréger de la donnée et modifier les prédictions en direct

Analyse d'image par l'apprentissage profond

Contexte du projet

- Développement des activités data
- Démocratisation de l'apprentissage profond
- Maturité technique des paquets Python



Objectifs

- Analyse automatique des données images
- Montée en compétence interne

• Classification: déterminer le type d'objet représenté sur une image

- Classification: déterminer le type d'objet représenté sur une image
- Détection d'objets: vérifier si des objets sont présents sur une image

- Classification: déterminer le type d'objet représenté sur une image
- Détection d'objets: vérifier si des objets sont présents sur une image
- Localisation d'objets: localiser chaque objet sur une image

- Classification: déterminer le type d'objet représenté sur une image
- Détection d'objets: vérifier si des objets sont présents sur une image
- Localisation d'objets: localiser chaque objet sur une image
- Segmentation sémantique: étiqueter chaque pixel par l'objet auquel il appartient

Jeux de données

 Shapes: images générées aléatoirement avec un carré, un cercle et/ou un triangle

Jeux de données

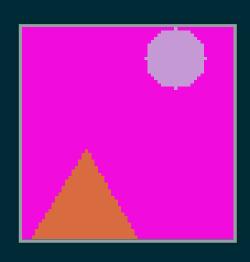
 Shapes: images générées aléatoirement avec un carré, un cercle et/ou un triangle

 Mapillary: images de scènes urbaines, avec 66 types d'objet

Détection d'objets

<u>Inputs</u> Lots d'images [dimension = (lot, pixel, pixel, canaux)]

Outputs Lot de vecteurs d'étiquettes [dimension = (lot, étiquettes)]



- L'image contient: cercle triangle
- L'image ne contient pas: carré
- Résultat: [0, 1, 1]

- Réseau de neurone convolutionnel "naïf":
 - quelques blocs de convolutions au début
 - quelques couches denses à la fin
- VGG16: un réseau *plus gros* avec plus de couches
- Inception: un réseau plus intelligent avec des blocs innovants

Segmentation sémantique

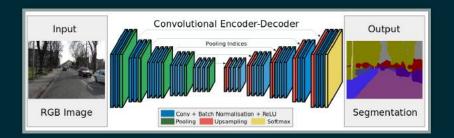
<u>Inputs</u> Lots d'images [dimension = (lot, pixels, pixels, canaux)]

Outputs Lots de vecteurs d'étiquettes [dimension = (lot, pixels, pixels, étiquettes)]

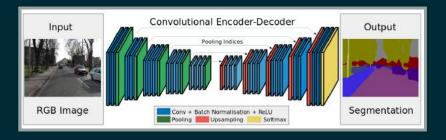
- Résultat: 1 si le pixel (p, p)
 de l'image i appartient à un objet de la classe c
- Construit une version "étiquetée" de chaque image

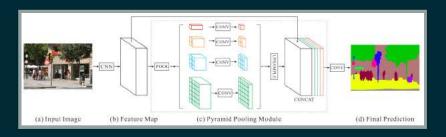
Fully Conventional
 Network: ne pas utiliser
 de couche dense (tout convolutionnel)

- Fully Conventional
 Network: ne pas utiliser
 de couche dense (tout convolutionnel)
- Encoder-decoder architecture

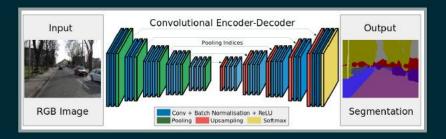


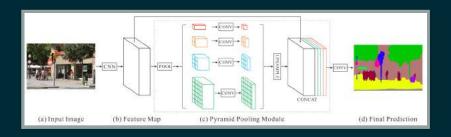
- Fully Conventional
 Network: ne pas utiliser
 de couche dense (tout convolutionnel)
- Encoder-decoder architecture
- PSPNet: structure pyramidale

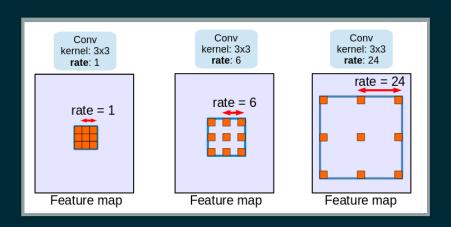




- Fully Conventional
 Network: ne pas utiliser
 de couche dense (tout convolutionnel)
- Encoder-decoder architecture
- PSPNet: structure pyramidale
- Dilated/Atrous convolutions







Résultats

- Production d'une petite application web pour la détection d'objets
- Segmentation sémantique bientôt disponible...

Conclusion

- L'apprentissage profond chez Oslandia : sujet récent
- Etiquetage d'images, agnosticisme vis-à-vis du secteur d'application
- Perspective: lier segmentation sémantique et 3D

Merci de votre attention!

Questions?

raphael.delhome@oslandia.com

Pour aller plus loin:

- http://oslandia.com/en/blog/
- https://github.com/Oslandia
- http://data.oslandia.io